Large-scale models require substantial computational resources for analysis and studying treatment conditions. Specifically, estimating treatment effects using simulations may require a lot of infeasible resources to allocate at every treatment condition. Therefore, it is essential to develop efficient methods to allocate computational resources for estimating treatment effects. Agent-based simulation allows us to generate highly realistic simulation samples. FRED (A Framework for Reconstructing Epidemiological Dynamics) is an agent-based modeling system with a geospatial perspective using a synthetic population constructed based on the U.S. census data. Given its synthetic population, FRED simulations present a baseline for comparable results from different treatment conditions and treatment conditions. In this paper, we show three other methods for estimating treatment effects. In the first method, we resort to brute-force allocation, where all treatment conditions have an equal number of samples with a relatively large number of simulation runs. In the second method, we try to reduce the number of simulation runs by customizing individual samples required for each treatment effect based on the width of confidence intervals around the mean estimates. In the third method, we use a regression model, which allows us to learn across the treatment conditions such that simulation samples allocated for a treatment condition will help better estimate treatment effects in other conditions. We show that the regression-based methods result in a comparable estimate of treatment effects with less computational resources. The reduced variability and faster convergence of model-based estimates come at the cost of increased bias, and the bias-variance trade-off can be controlled by adjusting the number of model parameters (e.g., including higher-order interaction terms in the regression model).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员