The objective of this study is to develop a model-free workspace trajectory planner for space manipulators using a Twin Delayed Deep Deterministic Policy Gradient (TD3) agent to enable safe and reliable debris capture. A local control strategy with singularity avoidance and manipulability enhancement is employed to ensure stable execution. The manipulator must simultaneously track a capture point on a non-cooperative target, avoid self-collisions, and prevent unintended contact with the target. To address these challenges, we propose a curriculum-based multi-critic network where one critic emphasizes accurate tracking and the other enforces collision avoidance. A prioritized experience replay buffer is also used to accelerate convergence and improve policy robustness. The framework is evaluated on a simulated seven-degree-of-freedom KUKA LBR iiwa mounted on a free-floating base in Matlab/Simulink, demonstrating safe and adaptive trajectory generation for debris removal missions.
翻译:暂无翻译