User ratings play a significant role in spoken dialogue systems. Typically, such ratings tend to be averaged across all users and then utilized as feedback to improve the system or personalize its behavior. While this method can be useful to understand broad, general issues with the system and its behavior, it does not take into account differences between users that affect their ratings. In this work, we conduct a study to better understand how people rate their interactions with conversational agents. One macro-level characteristic that has been shown to correlate with how people perceive their inter-personal communication is personality. We specifically focus on agreeableness and extraversion as variables that may explain variation in ratings and therefore provide a more meaningful signal for training or personalization. In order to elicit those personality traits during an interaction with a conversational agent, we designed and validated a fictional story, grounded in prior work in psychology. We then implemented the story into an experimental conversational agent that allowed users to opt-in to hearing the story. Our results suggest that for human-conversational agent interactions, extraversion may play a role in user ratings, but more data is needed to determine if the relationship is significant. Agreeableness, on the other hand, plays a statistically significant role in conversation ratings: users who are more agreeable are more likely to provide a higher rating for their interaction. In addition, we found that users who opted to hear the story were, in general, more likely to rate their conversational experience higher than those who did not.


翻译:用户评级在语音对话系统中起着重要作用。 一般来说, 这种评级通常在所有用户中平均使用, 然后用作反馈, 来改进系统或个人化行为。 虽然这种方法可以有助于理解系统及其行为的广泛、 一般性问题, 但它没有考虑到用户之间影响评级的不同。 在这项工作中, 我们开展研究, 以更好地了解人们如何与对话媒介进行互动。 一个宏观层面的特征, 已经显示与人们如何看待个人之间的沟通是个性相关。 我们特别侧重于可喜性和外向性, 作为解释评级差异的变量, 从而为培训或个人化提供更有意义的信号。 为了在与一个对话代理人的互动中了解这些个性特征, 我们设计并验证了一个基于先前心理学工作的虚构故事。 然后我们将故事应用到一个实验性对话媒介, 允许用户选择听故事。 我们的结果表明, 人类- 对话代理人的互动, 外向用户评级发挥作用, 但需要更多的数据来确定关系是否重要。 在与对话中, 比较容易理解的用户, 更有可能的用户在另一个层次上找到一个更能理解的层次。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员