While there appears to be a general consensus in the literature on the definition of the estimand and estimator associated with the Wilcoxon-Mann-Whitney test, it seems somewhat less clear as to how best to estimate the variance. In addition to the Wilcoxon-Mann-Whitney test, we review different proposals of variance estimators consistent under both the null hypothesis and the alternative. Moreover, in case of small sample sizes, an approximation of the distribution of the test statistic based on the t-distribution, a logit transformation and a permutation approach have been proposed. Focussing as well on different estimators of the degrees of freedom as regards the t-approximation, we carried out simulations for a range of scenarios, with results indicating that the performance of different variance estimators in terms of controlling the type I error rate largely depends on the heteroskedasticity pattern and the sample size allocation ratio, not on the specific type of distributions employed. By and large, a particular t-approximation together with Perme and Manevski's variance estimator best maintains the nominal significance level


翻译:虽然文献中似乎对与Wilcoxon-Mann-Whitney测试有关的估计和估计标准的定义有普遍共识,但对如何最好地估计差异似乎不太清楚。除了Wilcoxon-Mann-Whitney测试外,我们审查在无效假设和替代办法下一致的不同估计标准的不同建议。此外,在样本规模小的情况下,提议了基于T分布、对账转换和调整方法的测试统计分布近似。在t-接近方面,我们集中关注自由程度的不同估计标准,并对一系列情景进行了模拟,结果显示,不同差异估计者在控制I型错误率方面的表现主要取决于偏差性模式和抽样规模分配比率,而不是基于使用的具体分布类型。与 Perme 和 Manovisca 相比,最佳和最佳应用水平保持了最高和最高水平。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员