A novel hack involving Large Language Models (LLMs) has emerged, leveraging adversarial suffixes to trick models into generating perilous responses. This method has garnered considerable attention from reputable media outlets such as the New York Times and Wired, thereby influencing public perception regarding the security and safety of LLMs. In this study, we advocate the utilization of perplexity as one of the means to recognize such potential attacks. The underlying concept behind these hacks revolves around appending an unusually constructed string of text to a harmful query that would otherwise be blocked. This maneuver confuses the protective mechanisms and tricks the model into generating a forbidden response. Such scenarios could result in providing detailed instructions to a malicious user for constructing explosives or orchestrating a bank heist. Our investigation demonstrates the feasibility of employing perplexity, a prevalent natural language processing metric, to detect these adversarial tactics before generating a forbidden response. By evaluating the perplexity of queries with and without such adversarial suffixes using an open-source LLM, we discovered that nearly 90 percent were above a perplexity of 1000. This contrast underscores the efficacy of perplexity for detecting this type of exploit.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月10日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月10日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员