Transfer learning is an exciting area of Natural Language Processing that has the potential to both improve model performance and increase data efficiency. This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain. We hypothesize that a model can utilize the information learned from a source task to better learn a target task, thereby reducing the number of target task training samples required. Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning. Our results lead us to believe that this unexpected result could be due to the effects of catastrophic forgetting, motivating further work into methods that prevent such forgetting.


翻译:传输学习是自然语言处理的一个令人振奋的领域,它有可能改善模型性能和提高数据效率。本研究探讨了在对话域内不同数量的目标任务培训数据对相继转移学习的影响。我们假设模型能够利用从源任务中学到的信息更好地学习目标任务,从而减少所需的目标任务培训样本数量。我们的数据不自然地表明,目标任务培训数据的规模往往对相继转移学习与不转移学习的同一模式相比产生最小影响。我们的结果使我们相信,这一意外结果可能是灾难性的遗忘的影响,从而推动进一步开展工作,制定防止这种遗忘的方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员