With the rapid advancements in deep learning technologies, person re-identification (ReID) has witnessed remarkable performance improvements. However, the majority of prior works have traditionally focused on solving the problem via extracting features solely from a single perspective, such as uniform partitioning, hard attention mechanisms, or semantic masks. While these approaches have demonstrated efficacy within specific contexts, they fall short in diverse situations. In this paper, we propose a novel approach, Mutual Distillation Learning For Person Re-identification (termed as MDPR), which addresses the challenging problem from multiple perspectives within a single unified model, leveraging the power of mutual distillation to enhance the feature representations collectively. Specifically, our approach encompasses two branches: a hard content branch to extract local features via a uniform horizontal partitioning strategy and a Soft Content Branch to dynamically distinguish between foreground and background and facilitate the extraction of multi-granularity features via a carefully designed attention mechanism. To facilitate knowledge exchange between these two branches, a mutual distillation and fusion process is employed, promoting the capability of the outputs of each branch. Extensive experiments are conducted on widely used person ReID datasets to validate the effectiveness and superiority of our approach. Notably, our method achieves an impressive $88.7\%/94.4\%$ in mAP/Rank-1 on the DukeMTMC-reID dataset, surpassing the current state-of-the-art results. Our source code is available at https://github.com/KuilongCui/MDPR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员