Consensus protocols used today in blockchains often rely on computational power or financial stakes - scarce resources. We propose a novel protocol using social capital - trust and influence from social interactions - as a non-transferable staking mechanism to ensure fairness and decentralization. The methodology integrates zero-knowledge proofs, verifiable credentials, a Whisk-like leader election, and an incentive scheme to prevent Sybil attacks and encourage engagement. The theoretical framework would enhance privacy and equity, though unresolved issues like off-chain bribery require further research. This work offers a new model aligned with modern social media behavior and lifestyle, with applications in finance, providing a practical insight for decentralized system development.


翻译:当前区块链中使用的共识协议通常依赖于计算能力或金融权益——这些稀缺资源。我们提出了一种新颖的协议,利用社会资本——来自社交互动的信任与影响力——作为不可转让的质押机制,以确保公平性与去中心化。该方法整合了零知识证明、可验证凭证、类Whisk的领导者选举机制以及激励方案,以防范女巫攻击并促进参与。该理论框架有望增强隐私性与公平性,但链外贿赂等未解决问题仍需进一步研究。这项工作提出了一种符合现代社交媒体行为与生活方式的新模型,在金融等领域具有应用前景,为去中心化系统开发提供了实践性见解。

0
下载
关闭预览

相关内容

在社会经济生活,银行、证券或保险业者从市场主体募集资金,并投资给其它市场主体的经济活动。
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员