Automated machine learning (AutoML) methods improve upon existing models by optimizing various aspects of their design. While present methods focus on hyperparameters and neural network topologies, other aspects of neural network design can be optimized as well. To further the state of the art in AutoML, this dissertation introduces techniques for discovering more powerful activation functions and establishing more robust weight initialization for neural networks. These contributions improve performance, but also provide new perspectives on neural network optimization. First, the dissertation demonstrates that discovering solutions specialized to specific architectures and tasks gives better performance than reusing general approaches. Second, it shows that jointly optimizing different components of neural networks is synergistic, and results in better performance than optimizing individual components alone. Third, it demonstrates that learned representations are easier to optimize than hard-coded ones, creating further opportunities for AutoML. The dissertation thus makes concrete progress towards fully automatic machine learning in the future.


翻译:

0
下载
关闭预览

相关内容

PMO:比较25种分子优化方法的样本效率
专知会员服务
6+阅读 · 2022年7月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员