Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to the referent entities from a knowledge base. Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters, which can be prohibitively costly and difficult to scale in the era of Large Language Models (LLMs). In this work, we propose GEMEL, a Generative Multimodal Entity Linking framework based on LLMs, which directly generates target entity names. We keep the vision and language model frozen and only train a feature mapper to enable cross-modality interactions. To adapt LLMs to the MEL task, we leverage the in-context learning capability of LLMs by retrieving multimodal instances as demonstrations. Extensive experiments show that, with only ~0.3% of the model parameters fine-tuned, GEMEL achieves state-of-the-art results on two well-established MEL datasets (7.7% accuracy gains on WikiDiverse and 8.8% accuracy gains on WikiMEL). The performance gain stems from mitigating the popularity bias of LLM predictions and disambiguating less common entities effectively. Further analysis verifies the generality and scalability of GEMEL. Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution for utilizing LLMs in the MEL task.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月3日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月3日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员