We consider the task of reconstructing polytopes with fixed facet directions from finitely many support function evaluations. We show that for a fixed simplicial normal fan the least-squares estimate is given by a convex quadratic program. We study the geometry of the solution set and give a combinatorial characterization for the uniqueness of the reconstruction in this case. We provide an algorithm that, under mild assumptions, converges to the unknown input shape as the number of noisy support function evaluations increases. We also discuss limitations of our results if the restriction on the normal fan is removed.


翻译:我们从有限的许多支持功能评价中考虑用固定面部方向重建多端顶楼的任务。 我们显示,对于固定的简易正常扇子来说,最小平方的估计数是由一个二次曲线程序提供的。 我们研究所设定的解决方案的几何学,并对本案中重建的独特性进行组合性定性。 我们提供了一种算法,根据温和的假设,随着噪音支持功能评价数量的增加,这种算法会与未知的输入形状汇合。 我们还讨论如果取消对正常扇子的限制,结果的局限性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员