Traditional curriculum learning proceeds from easy to hard samples, yet defining a reliable notion of difficulty remains elusive. Prior work has used submodular functions to induce difficulty scores in curriculum learning. We reinterpret adaptive subset selection and formulate it as a multi-armed bandit problem, where each arm corresponds to a submodular function guiding sample selection. We introduce ONLINESUBMOD, a novel online greedy policy that optimizes a utility-driven reward and provably achieves no-regret performance under various sampling regimes. Empirically, ONLINESUBMOD outperforms both traditional curriculum learning and bi-level optimization approaches across vision and language datasets, showing superior accuracy-efficiency tradeoffs. More broadly, we show that validationdriven reward metrics offer a principled way to guide the curriculum schedule.


翻译:传统课程学习遵循从易到难的样本顺序,然而定义可靠的难度度量仍具挑战性。先前研究采用子模函数在课程学习中构建难度评分。本文重新阐释自适应子集选择问题,并将其建模为多臂老虎机问题,其中每个臂对应一个用于指导样本选择的子模函数。我们提出ONLINESUBMOD——一种新颖的在线贪心策略,通过优化效用驱动的奖励函数,在不同采样机制下可证明实现无遗憾性能。实验表明,在视觉与语言数据集中,ONLINESUBMOD在准确率-效率权衡方面均优于传统课程学习与双层优化方法。更广泛而言,我们证明基于验证集的奖励指标为课程进度规划提供了理论指导框架。

0
下载
关闭预览

相关内容

课程是指学校学生所应学习的学科总和及其进程与安排。课程是对教育的目标、教学内容、教学活动方式的规划和设计,是教学计划、教学大纲等诸多方面实施过程的总和。广义的课程是指学校为实现培养目标而选择的教育内容及其进程的总和,它包括学校老师所教授的各门学科和有目的、有计划的教育活动。狭义的课程是指某一门学科。 专知上对国内外最新AI+X的课程进行了收集与索引,涵盖斯坦福大学、CMU、MIT、清华、北大等名校开放课程。
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月7日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员