Indolent cancers are characterized by long overall survival (OS) times. Therefore, powering a clinical trial to provide definitive assessment of the effects of an experimental intervention on OS in a reasonable timeframe is generally infeasible. Instead, the primary outcome in many pivotal trials is an intermediate clinical response such as progression-free survival (PFS). In several recently reported pivotal trials of interventions for indolent cancers that yielded promising results on an intermediate outcome, however, more mature data or post-approval trials showed concerning OS trends. These problematic results have prompted a keen interest in quantitative approaches for monitoring OS that can support regulatory decision-making related to the risk of an unacceptably large detrimental effect on OS. For example, the US Food and Drug Administration, the American Association for Cancer Research, and the American Statistical Association recently organized a one-day multi-stakeholder workshop entitled 'Overall Survival in Oncology Clinical Trials'. In this paper, we propose OS monitoring guidelines tailored for the setting of indolent cancers. Our pragmatic approach is modeled, in part, on the monitoring guidelines the FDA has used in cardiovascular safety trials conducted in Type 2 Diabetes Mellitus. We illustrate proposals through application to several examples informed by actual case studies.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员