Due to their quantitative nature, probabilistic programs pose non-trivial challenges for designing compositional and efficient program analyses. Many analyses for probabilistic programs rely on iterative approximation. This article presents an interprocedural dataflow-analysis framework, called NPA-PMA, for designing and implementing (partially) non-iterative program analyses of probabilistic programs with unstructured control-flow, nondeterminism, and general recursion. NPA-PMA is based on Newtonian Program Analysis (NPA), a generalization of Newton's method to solve equation systems over semirings. The key challenge for developing NPA-PMA is to handle multiple kinds of confluences in both the algebraic structures that specify analyses and the equation systems that encode control flow: semirings support a single confluence operation, whereas NPA-PMA involves three confluence operations (conditional, probabilistic, and nondeterministic). Our work introduces $\omega$-continuous pre-Markov algebras ($\omega$PMAs) to factor out common parts of different analyses; adopts regular infinite-tree expressions to encode program-execution paths in control-flow hyper-graphs; and presents a linearization method that makes Newton's method applicable to the setting of regular-infinite-tree equations over $\omega$PMAs. NPA-PMA allows analyses to supply a non-iterative strategy to solve linearized equations. Our experimental evaluation demonstrates that (i) NPA-PMA holds considerable promise for outperforming Kleene iteration, and (ii) provides great generality for designing program analyses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
19+阅读 · 2019年4月5日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
13+阅读 · 2021年5月25日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
19+阅读 · 2019年4月5日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员