In this paper, we study the graph induced by the $\textit{2-swap}$ permutation on words with a fixed Parikh vector. A $2$-swap is defined as a pair of positions $s = (i, j)$ where the word $w$ induced by the swap $s$ on $v$ is $v[1] v[2] \dots v[i - 1] v[j] v[i+1] \dots v[j - 1] v[i] v[j + 1] \dots v[n]$. With these permutations, we define the $\textit{Configuration Graph}$, $G(P)$ defined over a given Parikh vector. Each vertex in $G(P)$ corresponds to a unique word with the Parikh vector $P$, with an edge between any pair of words $v$ and $w$ if there exists a swap $s$ such that $v \circ s = w$. We provide several key combinatorial properties of this graph, including the exact diameter of this graph, the clique number of the graph, and the relationships between subgraphs within this graph. Additionally, we show that for every vertex in the graph, there exists a Hamiltonian path starting at this vertex. Finally, we provide an algorithm enumerating these paths from a given input word of length $n$ with a delay of at most $O(\log n)$ between outputting edges, requiring $O(n \log n)$ preprocessing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员