We study the problem of efficiently and fairly allocating a set of indivisible goods among agents with identical and additive valuations for the goods. The objective is to maximize the Nash social welfare, which is the geometric mean of the agents' valuations. While maximizing the Nash social welfare is NP-hard, a PTAS for this problem is presented by Nguyen and Rothe. The main contribution of this paper is to design a first additive PTAS for this problem, that is, we give a polynomial-time algorithm that maximizes the Nash social welfare within an additive error $\varepsilon v_{\rm max}$, where $\varepsilon$ is an arbitrary positive number and $v_{\rm max}$ is the maximum utility of a good. The approximation performance of our algorithm is better than that of a PTAS. The idea of our algorithm is simple; we apply a preprocessing and then utilize an additive PTAS for the target load balancing problem given recently by Buchem et al. However, a nontrivial amount of work is required to evaluate the additive error of the output.


翻译:我们研究的是,在对货物进行相同和添加性估价的代理商之间如何有效、公平地分配一套不可分割的商品的问题。目标是最大限度地增加纳什社会福利,这是纳什社会福利的几何平均值。在尽量扩大纳什社会福利是NP-硬体的同时,Nguyen和Rothe提出了解决这一问题的PTAS。本文的主要贡献是针对这一问题设计第一种添加式PTAS,即我们给出一个多元时间算法,将纳什社会福利最大化于一个添加式错误($\varepsilon v ⁇ rm max}$,其中,$varepsilon是任意的正数,$värm max}是一件好事的最大效用。我们的算法的近似性效果比PTAS要好。我们的算法概念很简单;我们采用了一种预处理方法,然后用一个添加式的PTASS来应对布切姆等人最近提出的目标负荷平衡问题。然而,评价产出的添加性错误需要非三倍的工作量。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员