Learning generalizable representation and classifier for class-imbalanced data is challenging for data-driven deep models. Most studies attempt to re-balance the data distribution, which is prone to overfitting on tail classes and underfitting on head classes. In this work, we propose Dual Compensation Residual Networks to better fit both tail and head classes. Firstly, we propose dual Feature Compensation Module (FCM) and Logit Compensation Module (LCM) to alleviate the overfitting issue. The design of these two modules is based on the observation: an important factor causing overfitting is that there is severe feature drift between training and test data on tail classes. In details, the test features of a tail category tend to drift towards feature cloud of multiple similar head categories. So FCM estimates a multi-mode feature drift direction for each tail category and compensate for it. Furthermore, LCM translates the deterministic feature drift vector estimated by FCM along intra-class variations, so as to cover a larger effective compensation space, thereby better fitting the test features. Secondly, we propose a Residual Balanced Multi-Proxies Classifier (RBMC) to alleviate the under-fitting issue. Motivated by the observation that re-balancing strategy hinders the classifier from learning sufficient head knowledge and eventually causes underfitting, RBMC utilizes uniform learning with a residual path to facilitate classifier learning. Comprehensive experiments on Long-tailed and Class-Incremental benchmarks validate the efficacy of our method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月10日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月10日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员