We introduce a new kernelization tool, called rainbow matching technique}, that is appropriate for the design of polynomial kernels for packing problems and their hitting counterparts. Our technique capitalizes on the powerful combinatorial results of [Graf, Harris, Haxell, SODA 2021]. We apply the rainbow matching technique on four (di)graph packing or hitting problems, namely the Triangle-Packing in Tournament problem (TPT), where we ask for a packing of $k$ directed triangles in a tournament, Directed Feedback Vertex Set in Tournament problem (FVST), where we ask for a (hitting) set of at most $k$ vertices which intersects all triangles of a tournament, the Induced 2-Path-Packing (IPP) where we ask for a packing of $k$ induced paths of length two in a graph and Induced 2-Path Hitting Set problem (IPHS), where we ask for a (hitting) set of at most $k$ vertices which intersects all induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [Fomin, Le, Lokshtanov, Saurabh, Thomass\'e, Zehavi. ACM Trans. Algorithms, 2019], where they gave a kernel of $O(k^{3/2})$ vertices for the two first problems and $O(k^{5/3})$ vertices for the two last. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that TPT and FVST admit (almost linear) kernels of $k^{1+\frac{O(1)}{\sqrt{\log{k}}}}$ vertices and that IPP and IPHS admit kernels of $O(k)$ vertices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员