Cyber-physical systems (CPS) integrate sensing, computing, and control to improve infrastructure performance, focusing on economic goals like performance and safety. However, they often neglect potential human-centered (or ''social'') benefits. Cyber-physical-social infrastructure systems (CPSIS) aim to address this by aligning CPS with social objectives. This involves defining social benefits, understanding human interactions with each other and infrastructure, developing privacy-preserving measurement methods, modeling these interactions for prediction, linking them to social benefits, and actuating the physical environment to foster positive social outcomes. This paper delves into recognizing dyadic human interactions using real-world data, which is the backbone to measuring social behavior. This lays a foundation to address the need to enhance understanding of the deeper meanings and mutual responses inherent in human interactions. While RGB cameras are informative for interaction recognition, privacy concerns arise. Depth sensors offer a privacy-conscious alternative by analyzing skeletal movements. This study compares five skeleton-based interaction recognition algorithms on a dataset of 12 dyadic interactions. Unlike single-person datasets, these interactions, categorized into communication types like emblems and affect displays, offer insights into the cultural and emotional aspects of human interactions.
翻译:暂无翻译