We propose a general error analysis related to the low-rank approximation of a given real matrix in both the spectral and Frobenius norms. First, we derive deterministic error bounds that hold with some minimal assumptions. Second, we derive error bounds in expectation in the non-standard Gaussian case, assuming a non-trivial mean and a general covariance matrix for the random matrix variable. The proposed analysis generalizes and improves the error bounds for spectral and Frobenius norms proposed by Halko, Martinsson and Tropp. Third, we consider the Randomized Singular Value Decomposition and specialize our error bounds in expectation in this setting. Numerical experiments on an instructional synthetic test case demonstrate the tightness of the new error bounds.


翻译:我们建议对光谱和弗罗贝尼乌斯规范中某个真实矩阵的低位近似值进行一般性错误分析。 首先,我们得出带有某些最低假设的确定性错误界限。 其次,我们得出非标准高斯案例的预期误差界限,假设随机矩阵变量的非三重平均值和一般共变矩阵。 拟议的分析对Halko、Martinsson和Tropp提出的光谱和弗罗贝尼乌斯规范的误差界限进行了归纳和改进。 第三,我们考虑了随机 Singular值分解,并专门确定了我们在此背景下的预期误差界限。 在一个指示性合成测试案例上的数值实验显示了新误差界限的严密性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月3日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员