Similar to many Machine Learning models, both accuracy and speed of the Cluster weighted models (CWMs) can be hampered by high-dimensional data, leading to previous works on a parsimonious technique to reduce the effect of "Curse of dimensionality" on mixture models. In this work, we review the background study of the cluster weighted models (CWMs). We further show that parsimonious technique is not sufficient for mixture models to thrive in the presence of huge high-dimensional data. We discuss a heuristic for detecting the hidden components by choosing the initial values of location parameters using the default values in the "FlexCWM" R package. We introduce a dimensionality reduction technique called T-distributed stochastic neighbor embedding (TSNE) to enhance the parsimonious CWMs in high-dimensional space. Originally, CWMs are suited for regression but for classification purposes, all multi-class variables are transformed logarithmically with some noise. The parameters of the model are obtained via expectation maximization algorithm. The effectiveness of the discussed technique is demonstrated using real data sets from different fields.


翻译:与许多机器学习模型相似,集群加权模型(CWM)的精度和速度可能受到高维数据的阻碍,从而导致以前关于减少“维度诅咒”对混合模型的影响的模糊技术的工程。我们在此工作中审查了集束加权模型的背景研究。我们进一步表明,光是粘度技术不足以使混合模型在巨大的高维数据面前蓬勃发展。我们讨论的是,通过使用“FlexCWM”R包中的默认值选择位置参数的初始值来探测隐藏部件的杂交技术。我们引入了一种称为T分布式随机相邻嵌入(TSNEE)的维度减少技术,以加强高维空间的粘度CWMS。最初,CWMS适合回归,但为了分类目的,所有多级变量都随着一些噪音而改变逻辑。通过预期最大化算法获得模型的参数。讨论过的技术的有效性通过不同领域的真实数据集得到证明。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员