Parallel programs are frequently modeled as dependency or cost graphs, which can be used to detect various bugs, or simply to visualize the parallel structure of the code. However, such graphs reflect just one particular execution and are typically constructed in a post-hoc manner. Graph types, which were introduced recently to mitigate this problem, can be assigned statically to a program by a type system and compactly represent the family of all graphs that could result from the program. Unfortunately, prior work is restricted in its treatment of futures, an increasingly common and especially dynamic form of parallelism. In short, each instance of a future must be statically paired with a vertex name. Previously, this led to the restriction that futures could not be placed in collections or be used to construct data structures. Doing so is not a niche exercise: such structures form the basis of numerous algorithms that use forms of pipelining to achieve performance not attainable without futures. All but the most limited of these examples are out of reach of prior graph type systems. In this paper, we propose a graph type system that allows for almost arbitrary combinations of futures and recursive data types. We do so by indexing datatypes with a type-level vertex structure, a codata structure that supplies unique vertex names to the futures in a data structure. We prove the soundness of the system in a parallel core calculus annotated with vertex structures and associated operations. Although the calculus is annotated, this is merely for convenience in defining the type system. We prove that it is possible to annotate arbitrary recursive types with vertex structures, and show using a prototype inference engine that these annotations can be inferred from OCaml-like source code for several complex parallel algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员