Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and sustained hypertension is an often silent risk factor, making cuffless continuous blood pressure (BP) monitoring with wearable devices important for early screening and long-term management. Most existing cuffless BP estimation methods use only photoplethysmography (PPG) and electrocardiography (ECG) signals, alone or in combination. These models are typically developed under resting or quasi-static conditions and struggle to maintain robust accuracy in multi-motion-state scenarios. In this study, we propose a six-modal BP estimation framework that jointly leverages ECG, multi-channel PPG, attachment pressure, sensor temperature, and triaxial acceleration and angular velocity. Each modality is processed by a lightweight branch encoder, contrastive learning enforces cross-modal semantic alignment, and a mixture-of-experts (MoE) regression head adaptively maps the fused features to BP across motion states. Comprehensive experiments on the public Pulse Transit Time PPG Dataset, which includes running, walking, and sitting data from 22 subjects, show that the proposed method achieves mean absolute errors (MAE) of 3.60 mmHg for systolic BP (SBP) and 3.01 mmHg for diastolic BP (DBP). From a clinical perspective, it attains Grade A for SBP, DBP, and mean arterial pressure (MAP) according to the British Hypertension Society (BHS) protocol and meets the numerical criteria of the Association for the Advancement of Medical Instrumentation (AAMI) standard for mean error (ME) and standard deviation of error (SDE).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员