Referred to as the third rung of the causal inference ladder, counterfactual queries typically ask the "What if ?" question retrospectively. The standard approach to estimate counterfactuals resides in using a structural equation model that accurately reflects the underlying data generating process. However, such models are seldom available in practice and one usually wishes to infer them from observational data alone. Unfortunately, the correct structural equation model is in general not identifiable from the observed factual distribution. Nevertheless, in this work, we show that under the assumption that the main latent contributors to the treatment responses are categorical, the counterfactuals can be still reliably predicted. Building upon this assumption, we introduce CounterFactual Query Prediction (CFQP), a novel method to infer counterfactuals from continuous observations when the background variables are categorical. We show that our method significantly outperforms previously available deep-learning-based counterfactual methods, both theoretically and empirically on time series and image data. Our code is available at https://github.com/edebrouwer/cfqp.


翻译:反事实质问通常会问“如果呢?”追溯性的问题。估计反事实的标准方法在于使用准确反映基本数据生成过程的结构等式模型。然而,这些模型在实践中很少,通常希望仅从观测数据中推断出来。不幸的是,正确的结构等式模型一般无法从观察到的事实分布中识别出来。然而,在这项工作中,我们表明,假设治疗答复的主要潜在贡献者是绝对的,反事实仍然可以可靠地预测。基于这一假设,我们引入了反事实询问预测(CFQP),这是在背景变量明确时从持续观察中推断反事实的一种新颖方法。我们表明,我们的方法在理论上和经验上明显地超越了以往在时间序列和图像数据上基于深学习的反事实方法。我们的代码可以在https://github.com/edebroewer/cfqp上查阅。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员