We study the problem of fairly allocating $m$ indivisible items among $n$ agents. Envy-free allocations, in which each agent prefers her bundle to the bundle of every other agent, need not exist in the worst case. However, when agents have additive preferences and the value $v_{i,j}$ of agent $i$ for item $j$ is drawn independently from a distribution $D_i$, envy-free allocations exist with high probability when $m \in \Omega( n \log n / \log \log n )$. In this paper, we study the existence of envy-free allocations under stochastic valuations far beyond the additive setting. We introduce a new stochastic model in which each agent's valuation is sampled by first fixing a worst-case function, and then drawing a uniformly random renaming of the items, independently for each agent. This strictly generalizes known settings; for example, $v_{i,j} \sim D_i$ may be seen as picking a random (instead of a worst-case) additive function before renaming. We prove that random renaming is sufficient to ensure that envy-free allocations exist with high probability in very general settings. When valuations are non-negative and ``order-consistent,'' a valuation class that generalizes additive, budget-additive, unit-demand, and single-minded agents, SD-envy-free allocations (a stronger notion of fairness than envy-freeness) exist for $m \in \omega(n^2)$ when $n$ divides $m$, and SD-EFX allocations exist for all $m \in \omega(n^2)$. The dependence on $n$ is tight, that is, for $m \in O(n^2)$ envy-free allocations don't exist with constant probability. For the case of arbitrary valuations (allowing non-monotone, negative, or mixed-manna valuations) and $n=2$ agents, we prove envy-free allocations exist with probability $1 - \Theta(1/m)$ (and this is tight).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2023年4月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员