Rank-based zeroth-order (ZO) optimization -- which relies only on the ordering of function evaluations -- offers strong robustness to noise and monotone transformations, and underlies many successful algorithms such as CMA-ES, natural evolution strategies, and rank-based genetic algorithms. Despite its widespread use, the theoretical understanding of rank-based ZO methods remains limited: existing analyses provide only asymptotic insights and do not yield explicit convergence rates for algorithms selecting the top-$k$ directions. This work closes this gap by analyzing a simple rank-based ZO algorithm and establishing the first \emph{explicit}, and \emph{non-asymptotic} query complexities. For a $d$-dimension problem, if the function is $L$-smooth and $μ$-strongly convex, the algorithm achieves $\widetilde{\mathcal O}\!\left(\frac{dL}μ\log\!\frac{dL}{μδ}\log\!\frac{1}{\varepsilon}\right)$ to find an $\varepsilon$-suboptimal solution, and for smooth nonconvex objectives it reaches $\mathcal O\!\left(\frac{dL}{\varepsilon}\log\!\frac{1}{\varepsilon}\right)$. Notation $\cO(\cdot)$ hides constant terms and $\widetilde{\mathcal O}(\cdot)$ hides extra $\log\log\frac{1}{\varepsilon}$ term. These query complexities hold with a probability at least $1-δ$ with $0<δ<1$. The analysis in this paper is novel and avoids classical drift and information-geometric techniques. Our analysis offers new insight into why rank-based heuristics lead to efficient ZO optimization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员