We construct pseudorandom error-correcting codes (or simply pseudorandom codes), which are error-correcting codes with the property that any polynomial number of codewords are pseudorandom to any computationally-bounded adversary. Efficient decoding of corrupted codewords is possible with the help of a decoding key. We build pseudorandom codes that are robust to substitution and deletion errors, where pseudorandomness rests on standard cryptographic assumptions. Specifically, pseudorandomness is based on either $2^{O(\sqrt{n})}$-hardness of LPN, or polynomial hardness of LPN and the planted XOR problem at low density. As our primary application of pseudorandom codes, we present an undetectable watermarking scheme for outputs of language models that is robust to cropping and a constant rate of random substitutions and deletions. The watermark is undetectable in the sense that any number of samples of watermarked text are computationally indistinguishable from text output by the original model. This is the first undetectable watermarking scheme that can tolerate a constant rate of errors. Our second application is to steganography, where a secret message is hidden in innocent-looking content. We present a constant-rate stateless steganography scheme with robustness to a constant rate of substitutions. Ours is the first stateless steganography scheme with provable steganographic security and any robustness to errors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员