We investigate the consequence of two Lip$(\gamma)$ functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given $K_0 > \varepsilon > 0$ and $\gamma > \eta > 0$ there is a constant $\delta = \delta(\gamma,\eta,\varepsilon,K_0) > 0$ for which the following is true. Let $\Sigma \subset \mathbb{R}^d$ be closed and $f , h : \Sigma \to \mathbb{R}$ be Lip$(\gamma)$ functions whose Lip$(\gamma)$ norms are both bounded above by $K_0$. Suppose $B \subset \Sigma$ is closed and that $f$ and $h$ coincide throughout $B$. Then over the set of points in $\Sigma$ whose distance to $B$ is at most $\delta$ we have that the Lip$(\eta)$ norm of the difference $f-h$ is bounded above by $\varepsilon$. More generally, we establish that this phenomenon remains valid in a less restrictive Banach space setting under the weaker hypothesis that the two Lip$(\gamma)$ functions $f$ and $h$ are only close in a pointwise sense throughout the closed subset $B$. We require only that the subset $\Sigma$ be closed; in particular, the case that $\Sigma$ is finite is covered by our results. The restriction that $\eta < \gamma$ is sharp in the sense that our result is false for $\eta := \gamma$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月30日
Arxiv
0+阅读 · 2024年5月29日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员