Few-shot node classification, which aims to predict labels for nodes on graphs with only limited labeled nodes as references, is of great significance in real-world graph mining tasks. Particularly, in this paper, we refer to the task of classifying nodes in classes with a few labeled nodes as the few-shot node classification problem. To tackle such a label shortage issue, existing works generally leverage the meta-learning framework, which utilizes a number of episodes to extract transferable knowledge from classes with abundant labeled nodes and generalizes the knowledge to other classes with limited labeled nodes. In essence, the primary aim of few-shot node classification is to learn node embeddings that are generalizable across different classes. To accomplish this, the GNN encoder must be able to distinguish node embeddings between different classes, while also aligning embeddings for nodes in the same class. Thus, in this work, we propose to consider both the intra-class and inter-class generalizability of the model. We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs. First, we propose to enhance the intra-class generalizability by involving a contrastive two-step optimization in each episode to explicitly align node embeddings in the same classes. Second, we strengthen the inter-class generalizability by generating hard node classes via a novel similarity-sensitive mix-up strategy. Extensive experiments on few-shot node classification datasets verify the superiority of our framework over state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/COSMIC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员