Scalable and realistic simulation of multi-agent traffic behavior is critical for advancing autonomous driving technologies. Although existing data-driven simulators have made significant strides in this domain, they predominantly rely on supervised learning to align simulated distributions with real-world driving scenarios. A persistent challenge, however, lies in the distributional shift that arises between training and testing, which often undermines model generalization in unseen environments. To address this limitation, we propose SMART-R1, a novel R1-style reinforcement fine-tuning paradigm tailored for next-token prediction models to better align agent behavior with human preferences and evaluation metrics. Our approach introduces a metric-oriented policy optimization algorithm to improve distribution alignment and an iterative "SFT-RFT-SFT" training strategy that alternates between Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) to maximize performance gains. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) validate the effectiveness of this simple yet powerful R1-style training framework in enhancing foundation models. The results on the Waymo Open Sim Agents Challenge (WOSAC) showcase that SMART-R1 achieves state-of-the-art performance with an overall realism meta score of 0.7858, ranking first on the leaderboard at the time of submission.
翻译:暂无翻译