Agents based on Large Language Models (LLMs) are increasingly permeating various domains of human production and life, highlighting the importance of aligning them with human values. The current alignment of AI systems primarily focuses on passively aligning LLMs through human intervention. However, agents possess characteristics like receiving environmental feedback and self-evolution, rendering the LLM alignment methods inadequate. In response, we propose an evolutionary framework for agent evolution and alignment, named EvolutionaryAgent, which transforms agent alignment into a process of evolution and selection under the principle of survival of the fittest. In an environment where social norms continuously evolve, agents better adapted to the current social norms will have a higher probability of survival and proliferation, while those inadequately aligned dwindle over time. Experimental results assessing the agents from multiple perspectives in aligning with social norms demonstrate that EvolutionaryAgent possesses the capability to align progressively better with the evolving social norms while maintaining its proficiency in general tasks. Effectiveness tests conducted on various open and closed-source LLMs as the foundation for agents also prove the applicability of our approach.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月22日
Arxiv
0+阅读 · 2024年2月20日
Arxiv
29+阅读 · 2023年2月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月22日
Arxiv
0+阅读 · 2024年2月20日
Arxiv
29+阅读 · 2023年2月10日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员