In this paper, we show different fine-tuning methods for Stable Diffusion XL; this includes inference steps, and caption customization for each image to align with generating images in the style of a commercial 2D icon training set. We also show how important it is to properly define what "high-quality" really is especially for a commercial-use environment. As generative AI models continue to gain widespread acceptance and usage, there emerge many different ways to optimize and evaluate them for various applications. Specifically text-to-image models, such as Stable Diffusion XL and DALL-E 3 require distinct evaluation practices to effectively generate high-quality icons according to a specific style. Although some images that are generated based on a certain style may have a lower FID score (better), we show how this is not absolute in and of itself even for rasterized icons. While FID scores reflect the similarity of generated images to the overall training set, CLIP scores measure the alignment between generated images and their textual descriptions. We show how FID scores miss significant aspects, such as the minority of pixel differences that matter most in an icon, while CLIP scores result in misjudging the quality of icons. The CLIP model's understanding of "similarity" is shaped by its own training data; which does not account for feature variation in our style of choice. Our findings highlight the need for specialized evaluation metrics and fine-tuning approaches when generating high-quality commercial icons, potentially leading to more effective and tailored applications of text-to-image models in professional design contexts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员