Artificial neural networks have proven to be extremely useful models that have allowed for multiple recent breakthroughs in the field of Artificial Intelligence and many others. However, they are typically regarded as black boxes, given how difficult it is for humans to interpret how these models reach their results. In this work, we propose a method which allows one to modify what an artificial neural network is perceiving regarding specific human-defined concepts, enabling the generation of hypothetical scenarios that could help understand and even debug the neural network model. Through empirical evaluation, in a synthetic dataset and in the ImageNet dataset, we test the proposed method on different models, assessing whether the performed manipulations are well interpreted by the models, and analyzing how they react to them.


翻译:人工神经网络已被证明是极为有用的模型,这些模型使得人造情报领域和许多其他领域最近取得了许多突破,然而,由于人类很难解释这些模型如何取得结果,这些网络通常被视为黑盒。 在这项工作中,我们提出一种方法,使人们可以修改人工神经网络对特定人类定义概念的认知,从而产生有助于理解甚至调和神经网络模型的假设情景。 通过经验评估,在合成数据集和图像网络数据集中,我们测试了不同模型的拟议方法,评估模型是否很好地解释了操作过程,并分析它们如何应对这些模型。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
20+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员