We consider the dunking problem: a solid body at uniform temperature $T_\text{i}$ is placed in a environment characterized by farfield temperature $T_\infty$ and time-independent spatially uniform heat transfer coefficient; we permit heterogeneous material composition. The problem is described by a heat equation with Robin boundary conditions. The crucial parameter is the Biot number, a nondimensional heat transfer coefficient; we consider the limit of small Biot number. We introduce first-order and second-order asymptotic approximations (in Biot number) for the spatial domain average temperature as a function of time; the first-order approximation is the standard `lumped model'. We provide asymptotic error estimates for the first-order and second-order approximations for small Biot number, and also, for the first-order approximation, non-asymptotic bounds valid for all Biot number. We also develop a second-order approximation and associated asymptotic error estimate for the normalized difference in the domain average and boundary average temperatures. Companion numerical solutions of the heat equation confirm the effectiveness of the error estimates for small Biot number. The second-order approximation and the first-order and second-order error estimates depend on several functional outputs associated with an elliptic partial differential equation; the latter can be derived from Biot-sensitivity analysis of the heat equation eigenproblem in the limit of small Biot number. Most important is the functional output $\phi$, the only functional output required for the first-order error estimate and also the second-order approximation; $\phi$ admits a simple physical interpretation in terms of conduction length scale. We characterize a class of spatial domains for which the standard lumped-model criterion -- Biot number (based on volume-to-area length scale) small -- is deficient.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月18日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员