Recent investigations in noise contrastive estimation suggest, both empirically as well as theoretically, that while having more "negative samples" in the contrastive loss improves downstream classification performance initially, beyond a threshold, it hurts downstream performance due to a "collision-coverage" trade-off. But is such a phenomenon inherent in contrastive learning? We show in a simple theoretical setting, where positive pairs are generated by sampling from the underlying latent class (introduced by Saunshi et al. (ICML 2019)), that the downstream performance of the representation optimizing the (population) contrastive loss in fact does not degrade with the number of negative samples. Along the way, we give a structural characterization of the optimal representation in our framework, for noise contrastive estimation. We also provide empirical support for our theoretical results on CIFAR-10 and CIFAR-100 datasets.


翻译:最近对噪音对比性估计的调查在经验上和理论上都表明,在对比性损失中有更多的“负面样本”在理论上和理论上都表明,虽然在最初的临界值之外,在对比性损失中提高了下游分类的性能,但是由于“阴性覆盖”的权衡,下游的性能受到损害。但是,这种现象是对比性学习所固有的吗?我们在简单的理论环境中显示,正对是通过潜在类别(由Saunshi等人介绍的(ICML 2019年))的采样产生的,因此,表层的下游性能在实际中优化(人口)对比性损失并不与负性样品的数量相比下降。与此同时,我们从结构上描述我们框架中的最佳代表性,以噪声对比性估计。我们还从经验上支持我们关于CIFAR-10和CIFAR-100数据集的理论结果。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员