We consider the estimation of the parameters $s = (\nu, \alpha_1, \alpha_2, \cdots, \alpha_T)$ of a cumulative INAR($\infty$) process based on finite observations under the assumption $\sum_{k=1}^T \alpha_k < 1$ and $\sum_{k=1}^T\alpha_k^2<\frac12$. The parameter space is modeled as a Euclidean space $\mathfrak{l}^2$, with an inner product defined for pairs of parameter vectors. The primary goal is to estimate the intensity function $\Phi_s(t)$, which represents the expected value of the process at time $t$. We introduce a Least-Squares Contrast $\gamma_T(f)$, which measures the distance between the intensity function $\Phi_f(t)$ and the true intensity $\Phi_s(t)$. We further show that the contrast function $\gamma_T(f)$ can be used to estimate the parameters effectively, with an associated metric derived from a quadratic form. The analysis involves deriving upper and lower bounds for the expected values of the process and its square, leading to conditions under which the estimators are consistent. We also provide a bound on the variance of the estimators to ensure their asymptotic reliability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员