We prove the expected disturbance caused to a quantum system by a sequence of randomly ordered two-outcome projective measurements is upper bounded by the square root of the probability that at least one measurement in the sequence accepts. We call this bound the Gentle Random Measurement Lemma. We then consider problems in which we are given sample access to an unknown state $\rho$ and asked to estimate properties of the accepting probabilities $\text{Tr}[M_i \rho]$ of a set of measurements $\{M_1, M_2, \ldots , M_m\}$. We call these types of problems Quantum Event Learning Problems. Using the gentle random measurement lemma, we show randomly ordering projective measurements solves the Quantum OR problem, answering an open question of Aaronson. We also give a Quantum OR protocol which works on non-projective measurements but which requires a more complicated type of measurement, which we call a Blended Measurement. Given additional guarantees on the set of measurements $\{M_1, \ldots, M_m\}$, we show the Quantum OR protocols developed in this paper can also be used to find a measurement $M_i$ such that $\text{Tr}[M_i \rho]$ is large. We also give a blended measurement based protocol for estimating the average accepting probability of a set of measurements on an unknown state. Finally we consider the Threshold Search Problem described by O'Donnell and B\u{a}descu. By building on our Quantum Event Finding result we show that randomly ordered (or blended) measurements can be used to solve this problem using $O(\log^2(m) / \epsilon^2)$ copies of $\rho$. Consequently, we obtain an algorithm for Shadow Tomography which requires $\tilde{O}(\log^2(m)\log(d)/\epsilon^4)$ samples, matching the current best known sample complexity. This algorithm does not require injected noise in the quantum measurements, but does require measurements to be made in a random order and so is no longer online.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员