The autoregressive decoding in LLMs is the major inference bottleneck due to the memory-intensive operations and limited hardware bandwidth. 3D-stacked architecture is a promising solution with significantly improved memory bandwidth, which vertically stacked multi DRAM dies on top of logic die. However, our experiments also show the 3D-stacked architecture faces severer thermal issues compared to 2D architecture, in terms of thermal temperature, gradient and scalability. To better exploit the potential of 3D-stacked architecture, we present Tasa, a heterogeneous architecture with cross-stack thermal optimizations to balance the temperature distribution and maximize the performance under the thermal constraints. High-performance core is designed for compute-intensive operations, while high-efficiency core is used for memory-intensive operators, e.g. attention layers. Furthermore, we propose a bandwidth sharing scheduling to improve the bandwidth utilization in such heterogeneous architecture. Extensive thermal experiments show that our Tasa architecture demonstrates greater scalability compared with the homogeneous 3D-stacked architecture, i.e. up to 5.55 $\tccentigrade$, 9.37 $\tccentigrade$, and 7.91 $\tccentigrade$ peak temperature reduction for 48, 60, and 72 core configurations. Our experimental for Llama-65B and GPT-3 66B inferences also demonstrate 2.85x and 2.21x speedup are obtained over the GPU baselines and state-of-the-art heterogeneous PIM-based LLM accelerator


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员