Probabilistic programming languages (PPLs) allow programmers to construct statistical models and then simulate data or perform inference over them. Many PPLs restrict models to a particular instance of simulation or inference, limiting their reusability. In other PPLs, models are not readily composable. Using Haskell as the host language, we present an embedded domain specific language based on algebraic effects, where probabilistic models are modular, first-class, and reusable for both simulation and inference. We also demonstrate how simulation and inference can be expressed naturally as composable program transformations using algebraic effect handlers.


翻译:概率编程语言(PPLs)允许程序设计员建立统计模型,然后模拟数据或对其进行推断。许多 PPL 将模型限制在特定的模拟或推断实例中,限制其可再使用性。在其他 PPL 中,模型不易合成。用Haskell作为主机语言,我们展示了一种基于代数效应的嵌入域特定语言,其中概率模型是模块、一等和可同时用于模拟和推断的。我们还演示了如何用代数效果处理器将模拟和推断自然地表述为可作复制程序转换。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Top
微信扫码咨询专知VIP会员