This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular and isodual lattices, and the Construction A formally unimodular packings obtained from formally self-dual codes are presented. Recently, lattice coding for the Gaussian wiretap channel has been considered. A measure called secrecy function was proposed to characterize the eavesdropper's probability of correctly decoding. The aim is to determine the global maximum value of the secrecy function, called (strong) secrecy gain. We further apply lattice-like packings to coset coding for the Gaussian wiretap channel and show that the family of formally unimodular packings shares the same secrecy function behavior as unimodular and isodual lattices. We propose a universal approach to determine the secrecy gain of a Construction A formally unimodular packing obtained from a formally self-dual code. From the weight distribution of a code, we provide a necessary condition for a formally self-dual code such that its Construction A formally unimodular packing is secrecy-optimal. Finally, we demonstrate that formally unimodular packings/lattices can achieve higher secrecy gain than the best-known unimodular lattices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员