Recent trends in NLP utilize knowledge graphs (KGs) to enhance pretrained language models by incorporating additional knowledge from the graph structures to learn domain-specific terminology or relationships between documents that might otherwise be overlooked. This paper explores how SciNCL, a graph-aware neighborhood contrastive learning methodology originally designed for scientific publications, can be applied to the process industry domain, where text logs contain crucial information about daily operations and are often structured as sparse KGs. Our experiments demonstrate that language models fine-tuned with triplets derived from GE outperform a state-of-the-art mE5-large text encoder by 9.8-14.3% (5.4-8.0p) on the proprietary process industry text embedding benchmark (PITEB) while being 3-5 times smaller in size.
翻译:暂无翻译