A method using deep reinforcement learning (DRL) to non-iteratively generate an optimal mesh for an arbitrary blade passage is developed. Despite automation in mesh generation using either an empirical approach or an optimization algorithm, repeated tuning of meshing parameters is still required for a new geometry. The method developed herein employs a DRL-based multi-condition optimization technique to define optimal meshing parameters as a function of the blade geometry, attaining automation, minimization of human intervention, and computational efficiency. The meshing parameters are optimized by training an elliptic mesh generator which generates a structured mesh for a blade passage with an arbitrary blade geometry. During each episode of the DRL process, the mesh generator is trained to produce an optimal mesh for a randomly selected blade passage by updating the meshing parameters until the mesh quality, as measured by the ratio of determinants of the Jacobian matrices and the skewness, reaches the highest level. Once the training is completed, the mesh generator create an optimal mesh for a new arbitrary blade passage in a single try without an repetitive process for the parameter tuning for mesh generation from the scratch. The effectiveness and robustness of the proposed method are demonstrated through the generation of meshes for various blade passages.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月27日
Arxiv
0+阅读 · 2023年6月23日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员