Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modelled in terms of an alternating renewal process in equilibrium and the prior is a Markov point point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution.


翻译:Aoristic 数据可以用一个标志性的时点过程来描述,在这个时点中,无法直接观察到这些点,但已知这些点处于可观察的间隔期,即标记。我们考虑巴伊西亚州对潜在点的估计,当标记以平衡的交替更新过程为模型,而前者是Markov点过程。我们得出后端分布,估计其参数,并举一些例子来说明先前分布的影响。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
5+阅读 · 2021年4月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
51+阅读 · 2020年12月14日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月14日
Arxiv
5+阅读 · 2021年4月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员