We describe a simple pre-training approach for point clouds. It works in three steps: 1. Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for downstream point cloud tasks. We find that even when we construct a single pre-training dataset (from ModelNet40), this pre-training method improves accuracy across different datasets and encoders, on a wide range of downstream tasks. Specifically, we show that our method outperforms previous pre-training methods in object classification, and both part-based and semantic segmentation tasks. We study the pre-trained features and find that they lead to wide downstream minima, have high transformation invariance, and have activations that are highly correlated with part labels. Code and data are available at: https://github.com/hansen7/OcCo


翻译:我们描述对点云的简单培训前方法。 它分为三个步骤: 1. 将所有点都遮盖在摄像视图中; 2. 学习一个编码器解码器模型来重建隐蔽点; 3. 使用编码器加权作为下游点云任务的初始化。 我们发现,即使我们建造了一个单一的培训前数据集(来自模型Net40),这种培训前方法也提高了不同数据集和编码器的准确性,涉及广泛的下游任务。 具体地说,我们显示我们的方法在物体分类以及部分和语义分割任务方面都比以前的训练前方法要好。 我们研究了预先训练的特征,发现它们导致大下游的微型,具有高度的变异性,并具有与部分标签高度关联的激活功能。 代码和数据见: https://github.com/hansen7/OcCo: https://github. com/hansen7/Oco。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
专知会员服务
110+阅读 · 2020年3月12日
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员