While large language models (LLMs) have demonstrated remarkable versatility across a wide range of general tasks, their effectiveness often diminishes in domain-specific applications due to inherent knowledge gaps. Moreover, their performance typically declines when addressing complex problems that require multi-step reasoning and analysis. In response to these challenges, we propose leveraging both LLMs and AI agents to develop education assistants aimed at enhancing undergraduate learning in biomechanics courses that focus on analyzing the force and moment in the musculoskeletal system of the human body. To achieve our goal, we construct a dual-module framework to enhance LLM performance in biomechanics educational tasks: 1) we apply Retrieval-Augmented Generation (RAG) to improve the specificity and logical consistency of LLM's responses to the conceptual true/false questions; 2) we build a Multi-Agent System (MAS) to solve calculation-oriented problems involving multi-step reasoning and code execution. Specifically, we evaluate the performance of several LLMs, i.e., Qwen-1.0-32B, Qwen-2.5-32B, and Llama-70B, on a biomechanics dataset comprising 100 true/false conceptual questions and problems requiring equation derivation and calculation. Our results demonstrate that RAG significantly enhances the performance and stability of LLMs in answering conceptual questions, surpassing those of vanilla models. On the other hand, the MAS constructed using multiple LLMs demonstrates its ability to perform multi-step reasoning, derive equations, execute code, and generate explainable solutions for tasks that require calculation. These findings demonstrate the potential of applying RAG and MAS to enhance LLM performance for specialized courses in engineering curricula, providing a promising direction for developing intelligent tutoring in engineering education.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员