Let $G$ be a graph on $n$ vertices. For $i\in \{0,1\}$ and a connected graph $G$, a spanning forest $F$ of $G$ is called an $i$-perfect forest if every tree in $F$ is an induced subgraph of $G$ and exactly $i$ vertices of $F$ have even degree (including zero). A $i$-perfect forest of $G$ is proper if it has no vertices of degree zero. Scott (2001) showed that every connected graph with even number of vertices contains a (proper) 0-perfect forest. We prove that one can find a 0-perfect forest with minimum number of edges in polynomial time, but it is NP-hard to obtain a 0-perfect forest with maximum number of edges. Moreover, we show that to decide whether $G$ has a 0-perfect forest with at least $|V(G)|/2+k$ edges, where $k$ is the parameter, is W[1]-hard. We also prove that for a prescribed edge $e$ of $G,$ it is NP-hard to obtain a 0-perfect forest containing $e,$ but one can decide if there existsa 0-perfect forest not containing $e$ in polynomial time. It is easy to see that every graph with odd number of vertices has a 1-perfect forest. It is not the case for proper 1-perfect forests. We give a characterization of when a connected graph has a proper 1-perfect forest.


翻译:$G$ 是一个关于美元顶点的图表。 对于 $@ 0. 1 $ 美元 和一个连接的图形 G$ 美元 来说, 横贯森林的美元 $$ 如果每棵一棵一棵一棵一棵一棵一棵一棵一棵一棵一棵一棵一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一滴一

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
48+阅读 · 2020年8月19日
迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关VIP内容
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
48+阅读 · 2020年8月19日
迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员