Gradient Clock Synchronization (GCS) is the task of minimizing the local skew, i.e., the clock offset between neighboring clocks, in a larger network. While asymptotically optimal bounds are known, from a practical perspective they have crucial shortcomings: - Local skew bounds are determined by upper bounds on offset estimation that need to be guaranteed throughout the entire lifetime of the system. - Worst-case frequency deviations of local oscillators from their nominal rate are assumed, yet frequencies tend to be much more stable in the (relevant) short term. State-of-the-art deployed synchronization methods adapt to the true offset measurement and frequency errors, but achieve no non-trivial guarantees on the local skew. In this work, we provide a refined model and novel analysis of existing techniques for solving GCS in this model. By requiring only stability of measurement and frequency errors, we can circumvent existing lower bounds, leading to dramatic improvements under very general conditions. For example, if links exhibit a uniform worst-case estimation error of $\Delta$ and a change in estimation errors of $\delta\ll \Delta$ on relevant time scales, we bound the local skew by $O(\Delta+\delta \log D)$ for networks of diameter $D$, effectively ``breaking'' the established $\Omega(\Delta\log D)$ lower bound, which holds when $\delta=\Delta$. Similarly, we show how to limit the influence of local oscillators on $\delta$ to scale with the change of frequency of an individual oscillator on relevant time scales, rather than a worst-case bound over all oscillators and the lifetime of the system. Moreover, we show how to ensure self-stabilization in this challenging setting. Last, but not least, we extend all of our results to the scenario of external synchronization, at the cost of a limited increase in stabilization time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员