The uniform information density (UID) hypothesis, which posits that speakers behaving optimally tend to distribute information uniformly across a linguistic signal, has gained traction in psycholinguistics as an explanation for certain syntactic, morphological, and prosodic choices. In this work, we explore whether the UID hypothesis can be operationalized as an inductive bias for statistical language modeling. Specifically, we augment the canonical MLE objective for training language models with a regularizer that encodes UID. In experiments on ten languages spanning five language families, we find that using UID regularization consistently improves perplexity in language models, having a larger effect when training data is limited. Moreover, via an analysis of generated sequences, we find that UID-regularized language models have other desirable properties, e.g., they generate text that is more lexically diverse. Our results not only suggest that UID is a reasonable inductive bias for language modeling, but also provide an alternative validation of the UID hypothesis using modern-day NLP tools.


翻译:统一信息密度假设(UID)假设认为,发言者最好倾向于在一个语言信号中统一传播信息,这种假设在精神语言学中获得了牵引力,以解释某些综合、形态学和预测性选择。在这项工作中,我们探讨统一信息密度假设是否可以作为统计语言模型的诱导偏差加以操作。具体地说,我们用一个编码UID的常规化器来强化培训语言模型的典型语言目标。在涉及五种语言组的十种语言组的实验中,我们发现使用统一信息正规化不断改善语言模型的易懂性,在培训数据有限时产生更大的效果。此外,通过分析生成的序列,我们发现UID正规化语言模型具有其他可取的属性,例如,它们生成的文本在词汇上更加多样化。我们的结果不仅表明,通用数据对于语言模型的描述偏差是合理的,而且还用现代NLP工具对通用信息假设进行替代验证。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
已删除
将门创投
4+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员