Recently, Chatterjee (2021) introduced a new rank-based correlation coefficient which can be used to measure the strength of dependence between two random variables. This coefficient has already attracted much attention as it converges to the Dette-Siburg-Stoimenov measure (see Dette et al. (2013)), which equals $0$ if and only if the variables are independent and $1$ if and only if one variable is a function of the other. Further, Chatterjee's coefficient is computable in (near) linear time, which makes it appropriate for large-scale applications. In this paper, we expand the theoretical understanding of Chatterjee's coefficient in two directions: (a) First we consider the problem of testing for independence using Chatterjee's correlation. We obtain its asymptotic distribution under any changing sequence of alternatives converging to the null hypothesis (of independence). We further obtain a general result that gives exact detection thresholds and limiting power for Chatterjee's test of independence under natural nonparametric alternatives converging to the null. As applications of this general result, we prove a $n^{-1/4}$ detection boundary for this test and compute explicitly the limiting local power on the detection boundary for popularly studied alternatives in the literature. (b) We then construct a test for non-trivial levels of dependence using Chatterjee's coefficient. In contrast to testing for independence, we prove that, in this case, Chatterjee's coefficient indeed yields a minimax optimal procedure with a $n^{-1/2}$ detection boundary. Our proof techniques rely on Stein's method of exchangeable pairs, a non-asymptotic projection result, and information theoretic lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员