We introduce Dynamic Nested Depth (DND), a novel method that improves performance for off-the-shelf LLMs by selecting critical tokens to reprocess in a nested depth manner. Specifically, at the end of the given transformer layer, DND identifies more critical tokens with a router and feeds them back for an extra round of processing, effectively ``reviewing" difficult tokens while avoiding redundant computation for easier ones. The dynamic selection mechanism is tailored for precise control via two novel strategies: a router controlling loss to enhance token selection distinguishability, and a threshold control scheme to ensure selection stability. We demonstrate the effectiveness of DND by directly integrating it into pre-trained dense and MoE models during a post-training phase. On diverse benchmarks, this approach boosts the performances of the dense Qwen3-1.7B by 1.88% and the MoE Qwen3-30B-A3B by 0.87%, all with a minimal parameter and computing increase.


翻译:本文提出动态嵌套深度(Dynamic Nested Depth,DND)方法,这是一种通过以嵌套深度方式选择关键令牌进行再处理来提升现成大型语言模型性能的新技术。具体而言,在给定Transformer层结束时,DND通过路由器识别更关键的令牌,并将其反馈进行额外轮次处理,从而有效“审阅”困难令牌,同时避免对简单令牌的冗余计算。该动态选择机制通过两种新颖策略实现精确控制:采用路由器控制损失以增强令牌选择区分度,以及阈值控制方案确保选择稳定性。我们通过在预训练后阶段将DND直接集成到预训练的稠密模型和混合专家模型中验证其有效性。在多样化基准测试中,该方法使稠密模型Qwen3-1.7B性能提升1.88%,混合专家模型Qwen3-30B-A3B性能提升0.87%,且仅需极少的参数和计算量增加。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员